In mathematics, the inverse of a function is a function that, in some fashion, "undoes" the effect of (see inverse function for a formal and detailed definition). The inverse of is denoted . The statements y = f(x) and x = f −1(y) are equivalent.
Their two derivatives, assuming they exist, are reciprocal, as the Leibniz notation suggests; that is:
This is a direct consequence of the chain rule, since
and the derivative of with respect to is 1.
Writing explicitly the dependence of on and the point at which the differentiation takes place and using Lagrange's notation, the formula for the derivative of the inverse becomes
Geometrically, a function and inverse function have graphs that are reflections, in the line y = x. This reflection operation turns the gradient of any line into its reciprocal.
Assuming that has an inverse in a neighbourhood of and that its derivative at that point is non-zero, its inverse is guaranteed to be differentiable at and have a derivative given by the above formula.
Contents |
At x = 0, however, there is a problem: the graph of the square root function becomes vertical, corresponding to a horizontal tangent for the square function.
The chain rule given above is obtained by differentiating the identity x = f −1(f(x)) with respect to x. One can continue the same process for higher derivatives. Differentiating the identity with respect to x two times, one obtains
or replacing the first derivative using the formula above,
Similarly for the third derivative:
or using the formula for the second derivative,
These formulas are generalized by the Faà di Bruno's formula.
These formulas can also be written using Lagrange's notation. If f and g are inverses, then
so that
which agrees with the direct calculation.